基于系统工作,数据驱动客户生命周期管理(LTV)
客户全生命周期有不同的划分方式,但其本质上都是描述了这样一个过程:用户从刚开始对产品或服务的陌生,到慢慢熟悉,再到销售转化成为你的产品或服务的客户,最后到持续的使用或者慢慢流失。在这个过程中,有不同的部门会在不同的阶段参与其中,完成整个客户全生命周期的转化。
可以看到在最初的时候,企业无法获取客户的任何数据,或者只能获取到一些简单的公开数据,而随着客户在生命周期里逐渐的推动演化,企业与客户接触的越来越多,每一次接触点,都会产生大量的数据,客户沿着全生命周期流动的过程,就是数据逐渐完善的过程,像滚雪球一样,越滚越大,沉淀的这些数据,有助于优化企业效率,驱动企业这个盈利机器越转越快。因此,企业需要捕捉客户全生命周期里各个阶段产生的数据并且让它产生价值。
客户生命周期产生的数据
企业的目的是实现数据驱动客户全生命周期管理,就是产品、营销、客户成功持续在数据赋能基础上演化推进。因此,解决数据采集问题,数据分析问题也是企业落地数据驱动的主要工作。
解决数据采集问题的关键是“打通”
客户全生命周期的前半段是偏营销的部分,重点是打通线上、线下,包括渠道与后续的系统打通、行为采集日志与业务数据打通。
在打通行为数据与业务数据时,一定要注意标识关联客户。很多 To B 企业采用客户的名称作为标识,一旦企业名称更改,唯一标识便消失了,导致后续很难再打通,所以一定要有唯一标识,还要有数据有效性校验和一致性校验。
数据分析方法论
客户接触点,既是数据产生的场景,又是数据应用的场景,接触点产生的数据,在其它接触点产生价值。比如,To B 企业的客户接触点就是指客户与To B 企业的产品和服务有所接触的一些点,如打电话、见面、线上广告等。这些点都是客户有效地感知产品和服务的点,同时也是数据生成和价值发挥的点,就是每一个触点都会产生一些数据,同时数据进入接触点的时候也会释放它的价值。
客户全生命周期按接触点排列的时候会发现企业与客户有很多密密麻麻的接触点,每一个点都让企业更了解客户,以及让数据不断地增值,同时企业产生的这些数据会在自己的点或者其他的接触点有所体现,当企业将这些点有机的整合,企业就会发现数据驱动客户服务、客户成功是一件水到渠成的事。
客户的接触点
比如销售做客户电话拜访前首先可以看到它的所在地区、最后登陆时间来筛选目标客户,查询次数确定后续跟踪频率,通过最后的登录和查询次数企业可以选定不同的客户优先干预,优先找那些最后登录次数近,而且查询次数多的,根据营销枢纽分类、查阅内容确定话术等,如果没有这套系统,销售是没有切入点的,但是参考基础数据,销售可以轻松地拿到与客户的接触点。
反之,假设在数据没有打通的情况下,当企业拜访一家客户的时候需要先了解客户,系统上搜他的各种各样的拜访记录,有些拜访数据可能没有被记录,就要咨询对应的客户成功或销售企业的情况,这样一来,当管理的客户多了之后,不一定每个人都会记得那么清楚。但是如果企业集中采集这些数据,并且对其进行加工、整理之后,再输入系统中,员工基于系统工作,当销售或客户成功去拜访客户,或者用任何后端的方式去接触客户的时候都可以利用这些数据找到相关的切入点。
举个最典型的例子就是培训,企业给客户培训与客户实际学习到是两个概念,如果讲的越多,对方接受的不会越多,而是越少就是一个问题。因此,在观察客户的使用深度和广度的时候,可以先通过基础数据看到客户在不同的产品功能上的使用程度,这样企业可以灵活调整把一次性的填鸭式灌输式培训周期拉长,变成几次的持续性培训,每次培训关注一个点,培训完了可以评估他的效果,反过来再去下一个点,这样定制化就更强,培训的效果也更好。
请先 登录后发表评论 ~